

Segele Scoping Study v1.1 (24th September): JORC Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond Drill holes were completed using NQ size (47.6 mm diameter core) standard tube drilling. Core loss was encountered frequently at depths less than 30 m, however all the mineralised intersections in the drill holes occurred below this depth. Core recovery from depths greater than 30 m was consistently above 97% with only three drill runs with recoveries <90%. Diamond drill samples were taken over intervals ranging from 0.41 to 1.7 m although most samples were taken over 1 m intervals. Diamond core drilling has been used to extract NQ diameter core samples, in the relevant intersections the core was split length wise and one half was submitted to an accredited laboratory for gold and multi element assay. A full QAQC program has been adhered to with Certified reference materials, blanks and duplicates used frequently. For gold analysis a screen fire assay was used where visible gold has been observed, remaining samples were subjected to 50g fire assay.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drill core with NQ diameter (47.6mm diameter), core was oriented using a Devicore BBT system that marks the base of the hole for each core run.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All data has been continuously recorded and entered into a managed, cloud-based database (MxDeposit). Diamond drill recoveries were calculated by measuring the core recovered against the drillers recorded depth for each diamond core run. Core loss was encountered frequently at depths less than 30 m, however all the mineralised intersections in the drill holes occurred at depths greater than 30m. Core recovery from depths greater than 30 m was consistently above 97% with only three drill runs with recoveries <90%. Core recovery was calculated by measuring the core recovered against the drillers recorded depth for each drill run. There is no apparent correlation between grade and sample mass.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill core has been qualitatively logged by company geologists, recording lithology, alteration, structures, rock quality and mineralization according to company procedures.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill core is cut with a rock saw and half core samples were submitted to ALS in Addis Ababa for sample preparation and analysis. Samples were weighed up on receipt in the prep lab and crushed with a jaw crusher to 70% passing 2mm. The crushed material was split with a Jones-type riffle splitter to split off a 1000g subsample. The subsample was then pulverized to to 85% passing 75 micrometers. Analysis of half-core field duplicates has resulted in a coefficient of variation of 37% which is consistent with a highly variable, nuggety gold deposit. However, the size of samples taken from the diamond drilling at Segele may be too small given the coarse-gold nature of the mineralisation
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All gold assays are done by certified laboratories using proven techniques that are commonly used through out the gold exploration and mining business. Diamond drill samples were prepared at ALS (Addis Ababa) and then sent to ALS (Loughrea) and analysed. Samples submitted prior to September 2020 were analysed using a 30 g fire assay for samples not containing visible gold or a screen fire assay for samples that did contain visible gold. Some of the 30 g fire assays were subsequently re-assayed using a 50 g fire assay. From September 2020 onwards samples not containing visible gold were analysed using a 50 g fire assay. QA/QC sampling: Diamond drilling – blanks at a rate of 2:25, CRM's at a rate of 1:10, field duplicates at a rate of 1:30, crush duplicates at a rate of 1:20 and pulp duplicates at a rate of 1:15. The analysis of error and bias from the available QC data has resulted in acceptable results. All previous unacceptable QC results have been investigated and resolved (see Mineral Resource Report 6th April 2021).

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 There are no twin drill holes completed at Segele. The company has implemented a cloud-based data management system (MX Deposit) which minimises transcription errors and allows transparent and accurate data collection. No adjustments to assay data have been made The competent person has verified the database against certificates of assay.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill hole collars are surveyed with a Leica total station survey tool. For the first 41 drillholes downhole surveys were conducted using a DeviCore BBT tool which oriented the core and recorded changes in the drill hole dip at irregular intervals. The DeviCore tool does not record changes in azimuth and the drill holes are assumed to be straight. All work has been carried out using WGS 84 UTM Zone 36N coordinate system.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Diamond drilling at Segele was completed on a nominal drill spacing of between 10–15 mE by 10–15 mN. The diamond drilling spacing is sufficient to establish the geological and grade continuity of the Segele deposit for Mineral Resource estimation. Assay intervals are nominally 1m but occasional shorter intervals occur.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Diamond drilling at the Segele deposit has been conducted approximately perpendicular to the trend of the mineralisation. It does not appear that the orientation of the drilling has resulted in a sampling bias.
Sample security	The measures taken to ensure sample security.	 Diamond drill hole samples are sealed and labelled inside of individual plastic bags and then 10 samples are put in bulka bags and sealed. All sampling intervals are recorded onto paper logs and then entered into the Akobo geological database. ALS laboratory electronic submission forms are then completed for each sample batch and rechecked against the geological database entries. Samples are then transported by road to the ALS laboratory in Addis Ababa using a company truck. ALS perform a sample reconciliation when the samples are received.

Criteria	JORC Code explanation	Commentary
		 Sample pulps are then exported to Ireland for analysis at the ALS laboratory in Loughrea and a pulp split is sent back to Akobo for storage. Assay results are returned digitally and by hard-copy forms, and are checked against the sampling interval recorded in the geological database.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Review of company procedures has taken place as a part of the resource estimation process.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Comme	entary				Commentary				
Mineral tenement and land tenure status Exploration	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	 The (MC licer mini The Ethi All e which the second sec	Segele dep M/EL/262/2 nce is renew ing licence i re are no kr opian gold s exploration v	osit lies withi 002) which w red yearly, fo s required for own issues r ales royalties work has been	n Minera vas rene r up to 3 continu elating t s will ap n carried	al Exploration wed on 30 by years durated operation o third partic ply.	on Li Octo ation on. ies, h	cence ber 2020. after whic nowever st /ining Plc	The n time a andard (ETNO)		
parties		which is 99.97% owned by Akobo Mineral AB.									
Geology	Deposit type, geological setting and style of mineralisation.	 The with control local favor sheat to h ultra hyde fixin The some lense upw 	Segele dep in altered ul trolled by no I dilatationa pured precip aring within ave been in amafic rocks rous solution g and conce mineralisat betimes bifun es occurrect rards into the	osit is a high tramafic and orthwest–sout I zones orien itation of gold the ultramafic troduced duri , where the n as carrying go entrating gold ion has been reating lenses mostly withing e overlying m	-grade c mafic ro heast sl ted in ar i in narro c and ov ng hydr ninerals old. The l. modelle s using a n the ult afic unit	progenic go boks. The m hear mover n east–west bow zones a rerlying maf othermal alt were altere host rockst ed as a serie a cut-off 0.1 ramafic unit is.	Id de ninera nent t dire nd po fic un terati ed to (s) ac (s) ac (s) ac ts bu	posit host alisation is which has ction whic ockets of i its. Gold a on of the i amphibole cted as tra compact 15 g/t Au. t do also e	ed created h ntense uppears mafic to ⇒ by ps, thin and The extend		
Drill hole	A summary of all information material to the understanding of the avalaration results including a tabulation of the following information	Hole_ID	East_UTM36	North_UTM36	RI	Hole_depth	Dip	Azimuth			
mormation	for all Material drill holes:	SEDD01	727505.5585	715218.6241	627.308	32.8	-60	180			
 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	SEDD02	727505.4385	715219.3421	627.496	59	-75	180				
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	SEDD03	727529.6525	715220.6851	626.74	101.1	-75	180			
	 dip and azimuth of the hole 	SEDD04	727515.8385	715250.4941	627.178	95.5	-75	180			
	 down hole length and interception depth bole length 	SEDD05	727541.3385	715250.1451	626.353	134.8	-75	180			
	 If the exclusion of this information is justified on the basis that the 	SEDD06	727564.4255	715222.5801	619.55	104.86	-75	180			

Criteria	JORC Code explanation	Comme	entary					
	information is not Material and this exclusion does not detract from	SEDD08	727478.6295	715220.4801	629.812	44.62	-75	180
	the understanding of the report, the Competent Person should clearly	SEDD09	727478.9205	715230.0011	629.832	95.9	-60	150
		SEDD10	727530.7965	715220.6471	627.001	99	-80	330
		SEDD11	727517.5645	715221.8371	627.967	69.3	-70	180
		SEDD12	727539.4922	715219.3334	626.442	93.4	-75	180
		SEDD13	727535.0815	715235.1861	626.808	105	-75	180
		SEDD14	727523.9192	715233.1863	627.325	91	-75	180
		SEDD15	727509.6425	715232.1281	628.051	24	-75	180
		SEDD16	727509.7385	715234.9571	627.961	92.4	-75	180
		SEDD17	727454.0565	715221.0411	631.865	129.3	-75	180
		SEDD18	727527.1915	715281.0851	626.297	138.5	-75	180
		SEDD19	727503.5205	715281.9391	627.555	126.2	-75	180
		SEDD20	727541.687	715296.303	625.341	45.2	-75	180
		SEDD21	727543.7555	715306.6601	624.96	156.3	-75	180
		SEDD22	727516.1635	715298.2301	626.29	131.4	-75	180
		SEDD23	727528.8915	715248.2191	626.426	111.3	-75	180
		SEDD24	727523.7585	715221.4761	627.218	90.3	-80	180
		SEDD25	727527.9395	715281.9961	626.159	129.15	-65	160
		SEDD26	727532.9945	715263.3941	622.923	117.2	-72	180
		SEDD27	727532.9855	715224.0561	626.79	33.5	-75	180
		SEDD28	727533.0935	715227.1461	626.807	87.2	-75	180
		SEDD29	727543.4915	715236.9101	626.005	99.2	-75	180
		SEDD30	727549.7215	715250.8891	625.436	114.2	-75	180
		SEDD31	727527.6885	715300.3541	625.677	144	-75	180
		SEDD32	727516.4565	715281.6161	626.787	125.7	-75	180
		SEDD33	727520.9515	715288.7581	626.456	123.2	-75	180
		SEDD34	727532.8275	715291.4321	625.59	135.2	-75	180
		SEDD35	727542.3485	715299.9861	625.104	150.2	-65	160
		SEDD36	727551.7535	715307.1631	624.329	168	-75	180
		SEDD37	727539.2665	715285.9441	625.475	150.2	-75	180
		SEDD38	727536.3825	715330.0371	624.192	165.2	-75	180
		SEDD39	727547.2175	715330.8941	623.881	180.1	-75	180

Criteria	JORC Code explanation	Commentary
		SEDD40 727522.5265 715320.8471 624.962 141.2 -75 180 SEDD41 727557.3875 715331.0751 623.395 183.2 -75 180
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted averages are used for reporting of assay intersections with a 1 g/t cut-off and an internal maximum unmineralized width of 1m, i.e. no unmineralized sections longer than 1m are included in the interval. No high-cut has been used this was considered appropriate as the general nature of the mineralisation is high-grade and it is expected that high grades will be recoverable by gravity methods.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 It is the opinion of the company that the length of the drill intersections represents somewhat longer sections than true width. True width is typically 80 to 100% of the assayed interval, depending on hole orientation. For reporting in press releases a factor of 95% has been used to represent true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Please refer to the above report
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Both successful and unsuccessful holes have been reported in the press release. This version of JORC Table 1 discloses only the diamond drilling from the Segele deposit. For full disclosure of other sampling methods (RC, soil samping, trenching etc), please see the 2019 Competant Persons report and the 2021 Mineral Resource Estimate report (6th April 2021).
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 This version of JORC Table 1 discloses only the diamond drilling from the Segele deposit. For full disclosure of other sampling methods (RC, soil samping, trenching etc), please see the 2019 Competant Persons report and the 2021 Mineral Resource Estimate report (6th April 2021).
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Step-out drilling of the depth extent of the Segele mineralization is planned.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Akobo Minerals utilise a MX Deposit geological database which has built in validations for logging and sampling data entry. The database is managed by an Akobo Minerals employee who performs regular validations including sample interval checks, geological logging checks and assay value checks against returned laboratory certificates.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The Competent Person has not been able to undertake a physical site visit due to COVID-19 travel restrictions. The Competent Person has completed a virtual site visit with the Akobo Minerals Chief Operating Officer and Geological staff using Microsoft Teams. During the virtual site visit the Competent Person inspected diamond drill core processing (depth mark-ups, geological logging, core sampling and sample bagging prior to dispatch) as well as a virtual field visit to the Segele deposit to inspect drill hole collars, artisanal pits and the general geomorphology.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Geological logging data from diamond drill holes, trenches, artisanal pits and surface mapping and structural logging from diamond drill holes was used to generate the Segele geological model. 18 different lithologies have been logged at Segele, these were condensed down to four main lithologies for the lithological model: mafic, ultramafic, mafic schist and a late stage vulcanite dyke which cross-cuts the other lithologies and the gold mineralisation. Gold mineralisation was modelled as a series of compact thin and sometimes bifurcating lenses using a cut-off 0.10–0.15 g/t Au. The lenses occurred mostly within the ultramafic units but do also extend upwards into the overlying mafic units. Six mineralised lenses were modelled, a main lens, a hanging wall lens, a footwall lens occurring more at depth and three minor, more isolated lenses. The Mineral Resource estimate used the mineralised lenses as hard boundaries. The geological model is a reasonable global model for the deposit. Uncertainly exists about the structural controls on the mineralisation.

Criteria	JORC Code explanation	Commentary
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Segele mineralisation is approximately 40 m wide (east–west) and extends approximately 200 m down plunge to depths of up to 140 m below the topographic surface. The mineralised lenses are typically between 2–5 m thick but can vary from 1 m to 20 m thick.

Criteria	JORC Code explanation	Commentary
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen, include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available. 	 Estimates for gold were completed using Ordinary Kriging interpolation using Maptek Vulcan mining software. Each of the mineralised lenses was treated as hard boundaries and estimated separately. No deleterious elements or additional grade variables of economic significance have been estimated. Drill hole samples were composited to 1 m lengths, broken by the mineralised domains, with residual composites <0.4 m added to the previous 1 m composite. A top-cut of 400 g/t Au was applied to the main lens domain to remove one high-grade outlier and distance restrictions were applied to composite samples >100 g/t within the hanging wall lens and the footwall lens domains to control high-grade smearing in the estimate. The estimation block size used was 5 mX x 5 mY x 2 mRL or approximately half the drill hole spacing. The estimation was completed over three passes with searches ranging from 25 mX x 10 mY x 5 mRL to 100 mX x 100 mY x 25 mRL and sample ranges of minimum samples required between 4 and 6 samples and a maximum sample allowed of 20 samples, including a maximum of 3 samples per drill hole. Dynamic anisotropy searches were used during the estimates to account for localised changes in the dip and plunge of the mineralised lenses. Due to low sample numbers, the average composite gold grades were assigned to the three minor lenses which represent <1% of the Mineral Resources. The 2021 Segele Mineral Resource estimate is a maiden estimate. Inverse distance squared and uncut Ordinary Kriging check estimates were completed. The Segele Mineral Resource estimate has undergone several validation checks including visual validation against the diamond drill hole sampling, a global statistical comparison between the composite samples and the estimated blocks and swath plot validations comparing averaged panel composite and estimated blocks grades along strike, along the dip direction and vertically.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Tonnages have been estimated on a dry basis. There has been no assessment of the moisture content.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 A cut-off grade of 0.5 g/t Au has been used for Mineral Resource reporting. The Segele deposit has not yet undergone any mine planning assessment

Criteria	JORC Code explanation	Commentary
		however it is assumed that the deposit will be mined using conventional open pit mining methods. The cut-off used is consistent with similar Mineral Resource estimates reported elsewhere in Africa.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	The Segele deposit has not yet undergone any mine planning assessment however it is assumed that the deposit will be mined using conventional open pit mining methods.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 There has been no detailed metallurgical testwork conducted for the Segele deposit. Mineralogical investigations suggest that the mineralisation at the Segele deposit occurs as unevenly distributed, coarse to fine gold grains. The gold appears to be unusually pure with very little associated sulphide and no associated silver or metals.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 There has been no detailed Environmental, Social and Governance (ESG) studies or mine waste studies, completed for the Segele deposit. There is limited assaying information for deleterious elements such as arsenic (As) – 259 samples, mean 29.5 ppm As, max 932 ppm As, and sulphur (S) – 259 samples, mean 0.09% S, max 6.24% S. The Segele Creek runs north to south just to east of the Segele deposit and could be impacted by future mining. The Segele deposit is covered by a large amount of recent artisanal mining which is controlled by the Ethiopian Government. The Akobo Gold Project Exploration Licence allows Akobo Minerals AB to have priority over artisanal mining when conducting exploration activities however the company actively engages with the local artisanal miners to build good relations, share knowledge and conduct operations safely.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or 	 127 diamond drill samples were selected from a range of stratigraphies and grade ranges and were analysed for specific gravity at the ALS (Loughrea)

Criteria	JORC Code explanation	Commentary
	 dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 using a multipycnometer analytical method which uses an automated gas displacement pycnometer to determine density by measuring the pressure change of helium within a calibrated volume. The gas pycnometer measures volume of solid particles using gas (helium) displacement which will penetrate the finest pores.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 All the mineralisation within the maiden Segele Mineral Resource estimate has been classified as Inferred Mineral Resources. The Competent Person is of the opinion that the deposit has reasonable prospects for economic extraction using conventional open pit mining methods. Artisanal mining, survey data, sampling and assaying methodology and quality, confidence in the geological model, estimation performance and Environmental, Social and Governance (ESG) factors were all taken into consideration when classifying the Segele deposit's Mineral Resources.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 There have not been any audits or reviews of the 2021 Segele Mineral Resource estimate other than internal peer review by SRK.
Discussion of relative accuracy/confidence	 Where appropriate, a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate available. 	 The Competent Person considers that the unknown depth of artisanal shaft mining, surveying methodologies, low sample counts in some domains and confidence in the geological modelling, and limited ESG and mine planning assessments present the largest impacts on the confidence of the Mineral Resource estimate. The Competent Person is of the opinion that the maiden Segele Mineral Resource estimate represents an appropriate global estimate that reproduces the overall grade trends and tenor seen in the diamond drill hole samples. The estimate should not be considered an accurate local estimate.

Section 4 Estimation and Reporting of Ore Reserves No Ore reserves are reported in this study.